Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: covidwho-2295438

ABSTRACT

BACKGROUND: There is an urgent need to better understand the mechanisms underlying acute and long-term neurological symptoms after COVID-19. Neuropathological studies can contribute to a better understanding of some of these mechanisms. METHODS: We conducted a detailed postmortem neuropathological analysis of 32 patients who died due to COVID-19 during 2020 and 2021 in Austria. RESULTS: All cases showed diffuse white matter damage with a diffuse microglial activation of a variable severity, including one case of hemorrhagic leukoencephalopathy. Some cases revealed mild inflammatory changes, including olfactory neuritis (25%), nodular brainstem encephalitis (31%), and cranial nerve neuritis (6%), which were similar to those observed in non-COVID-19 severely ill patients. One previously immunosuppressed patient developed acute herpes simplex encephalitis. Acute vascular pathologies (acute infarcts 22%, vascular thrombosis 12%, diffuse hypoxic-ischemic brain damage 40%) and pre-existing small vessel diseases (34%) were frequent findings. Moreover, silent neurodegenerative pathologies in elderly persons were common (AD neuropathologic changes 32%, age-related neuronal and glial tau pathologies 22%, Lewy bodies 9%, argyrophilic grain disease 12.5%, TDP43 pathology 6%). CONCLUSIONS: Our results support some previous neuropathological findings of apparently multifactorial and most likely indirect brain damage in the context of SARS-CoV-2 infection rather than virus-specific damage, and they are in line with the recent experimental data on SARS-CoV-2-related diffuse white matter damage, microglial activation, and cytokine release.


Subject(s)
COVID-19 , Cognitive Dysfunction , Nervous System Diseases , Neuritis , White Matter , Humans , Aged , COVID-19/complications , SARS-CoV-2 , White Matter/pathology , Preexisting Condition Coverage , Nervous System Diseases/pathology , Cognitive Dysfunction/etiology
2.
J Neural Transm (Vienna) ; 128(10): 1551-1566, 2021 10.
Article in English | MEDLINE | ID: covidwho-1293380

ABSTRACT

Infectious agents, including viruses and bacteria, are proposed to be involved in the pathogenesis of Alzheimer's disease (AD). According to this hypothesis, these agents have capacity to evade the host immune system leading to chronic infection, inflammation, and subsequent deposition of Aß and phosphorylated-tau in the brain. Co-existing proteinopathies and age-related pathologies are common in AD and the brains of elderly individuals, but whether these are also related to neuroinfections remain to be established. This study determined the prevalence and distribution of neurodegenerative proteinopathies in patients with infection-induced acute or chronic inflammation associated with herpes simplex virus (HSV) encephalitis (n = 13) and neurosyphilis (n = 23). The mean age at death in HSV patients was 53 ± 12 years (range 24-65 years) and survival was 9 days-6 years following initial infection. The mean age at death and survival in neurosyphilis patients was 60 ± 15 years (range 36-86 years) and 1-5 years, respectively. Neuronal tau-immunoreactivity and neurites were observed in 8 HSV patients and 19 neurosyphilis patients, and in approximately half of these, this was found in regions associated with inflammation and expanding beyond regions expected from the Braak stage of neurofibrillary degeneration. Five neurosyphilis patients had cortical ageing-related tau astrogliopathy. Aß-plaques were found in 4 HSV patients and 11 neurosyphilis patients. Lewy bodies were observed in one HSV patient and two neurosyphilis patients. TDP-43 pathology was absent. These observations provide insights into deposition of neurodegenerative proteins in neuroinfections, which might have implications for COVID-19 patients with chronic and/or post-infectious neurological symptoms and encephalitis.


Subject(s)
Alzheimer Disease , COVID-19 , Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Neurofibrillary Tangles , Plaque, Amyloid , SARS-CoV-2 , Young Adult , tau Proteins
SELECTION OF CITATIONS
SEARCH DETAIL